

Performance Evaluation of Polymers for Bumping and Wafer Level Packaging

John JH Reche

945 E. Verde Lane, Tempe, AZ 85284 jjhreche@wafer-bumping.com

11th Symposium on Polymers for Microelectronics May 6, 2004 Wintherthur Museum and Gardens, DE

Purpose

- Design a mask set to evaluate polymers in multilayer applications
 - Optimize polymer performance and reliability
 - Optimize metallization process
 - Polymer and metallization cannot be tested separately because of process interaction
- Obtain quantitative data
 - Design to use minimal instrumentation
 - Minimize testing time
 - Remove subjective evaluation factors
 - Separate performance evaluation from processing convenience
- Shorten overall polymer evaluation cycle
- Applicable to internal or out-sourcing evaluation

Uncover the processing boundaries of materials

- Push materials and processes to their limit
 - Photolithographic patterns designed to check the limits of materials
 - Inability to achieve perfect results with a mask set is not a failure
 - It allows to uncover weaknesses in materials and process
 - Too often test patterns are designed specifically for a product development and never find the real capabilities of materials
 - Conceals real capability of material
 - Hide potential failures modes
 - Incomplete testing cost money in the long run
 - Need to repeat tests for the next product development cycle because of lack of confidence if the materials will work or not
- Final test criteria need to be process independent

Electrical tests related to polymers

- Effective dielectric constant
 - Parallel plate capacitors
- Surface leakage
 - Triple tracks:
 - Ground lines parallel on each side of a conductor
- Effect of humidity on ε' and ε"
 - Meshed capacitors allowing faster sensitivity to water vapor diffusion
- Dielectric integrity
 - Verification of the lack of pinhole from one dielectric level to the next
- Transmission lines
 - Dielectric properties determine transmission lines geometries
 - T Lines include vias to test and model high speed performance

Tests related to metallization

Metallization resistivity

- Single level Van der Pauwn
- Line width control structure

Interlevel connections

- Multi-level Van der Pauwn
- Daisy chains for reliability

Electrical

- Long lines with Kelvin pads
- Cross-talk (parallel lines)
- Impedance (shorts and opens)
- Capacitive structures
- Measurements of metal and dielectric losses
- Matching design criteria given by rf theory and measurements

Optimizing resolution of photosensitive materials

- A special pattern is used to monitor optimal exposure and development
 - Mask consist of squares with slowly increasing separation between them
- Optimum resolution is achieved when overlap between squares is minimum
 - Overlap very sensitive to photolitho processing parameters
 - focus, mask / wafer separation, development
- Performance evaluation accomplished with a simple visual inspection

Polymer thickness measurement

- Optical instrument best for measuring thick polymer layers
 - Stylus instruments:
 - Good for metals
 - Inoperative with wet films
- Spectroscopic reflectance
 - Newer instruments designed to work with thicker films
 - Thickness mapping instruments are inexpensive and quick
- Need to obtain the index of refraction data
 - n and k from UV to near IR
 - Can estimate n and k if not given by manufacturer
 - n and k may be different for wet and cured polymers
 - Solvent affects the complex index of refraction

Optimal photolitho processing

- Processing positive acting material:
 - overexposure increase overlap
 - underexposure decrease overlap
- Negative acting material
 - overexposure decrease overlap
 - underexposure increase overlap

Pattern to evaluate photolitho resolution

- Useful with photosensitive materials or pattern etching
 - Equal space and linewidth elements (equispace on the mask)
 - Evaluate quantitatively the resolution following optimization of the exposure and development
 - Positive and negative elements present in the pattern
 - Simultaneous accurate reproduction of small dots and vias cannot be achieved
 - Allow to determine and measure best compromise
 - Optimization is a compromise between conflicting requirements
- Mask bias
 - determined from measurements of the pattern after photolitho

Resolution target

Elements are large enough to be able to pass a stylus profilometer

Parallel lines can be used to evaluate planarisation capabilities

of the dielectric

Equispaced lines

- Linewidth is incremented in steps
- Rounding of corners after processing
 - Mask acts as a spatial low pass filter
 - Check on focus or distortion caused by mask to wafer separation
- Reproduction fidelity
 - Optimize exposure, mask separation, focal point as needed for best preservation of line / space width
 - Very small and large geometries cannot be optimized simultaneously

Negative and positive elements

- Small blocks and small vias
 - Difficult to optimize simultaneously
 - Rounding of corners becomes obvious
- Optimize
 - compromise between mask separation or projection focal point
 - Development
 - Concentration
 - Agitation
 - Wet etchant
 - Reveals gas trapping problem
 - Most often hydrogen, e.g. Al etch
 - · Wetting properties, agitation

Minimum resolvable linewidth

- Works equally well for positive or negative materials
- Tip of pointed lines disappear with loss of resolution
- Resolution readily determined by inspection

Optomac

Electrical measurement of linewidth & space (metals)

Van der Pauw cross: measures sheet resistivity $R_s = \left(\frac{\pi}{\ln 2}\right)\left(\frac{V_{3-4}}{I_{5-6}}\right)$

- Straight conductor: linewidth $W_{2-3} = 2W + S = R_s L_1 \left(I_{1-5} \right)_{V_{2-3}}$
- Split conductor:

- Linewidth
$$W_{7-8} = 2W = R_s L_2 \left(I_{1-5} \right)_{V_{7-8}}$$

- Space
$$S = W_{2-3} - W_{7-8}$$

Pattern developed by Jet Prop. Labs NASA Tech Brief July 1987 Vol 11, #7 item 68

Step coverage

- Serpentine line
 - Long conductors over topography
 - Equispaced polymer lines to create topography
 - Variations in topography line spacing reveals sensitivity of step coverage to topography
 - Long serpentine line with no topography used as reference
- Measure serpentine line resistivity
 - Resistivity tracks thickness and linewidth variations
 - Thinning of metallization lines over steps
 - Narrowing of lines due to photolitho over different planes
 - Cracking from thermal excursions
- Record percent increase in resistivity: line over topography versus line on flat surface for each step height

Serpentine for step coverage

- Cause of linewidth variations in serpentine over topography:
 - Differential in mask to metal separation between top and bottom of the ridges (aligner)
 - Fixed focal point and short depth of focus (inherent to physics of stepper)

Daisy chains

- Test vias between two or more metallization levels
- Test sensitivity of process to random faults in via contacts
- Should have probing pads at regular intervals to allow isolation of faults location
- Can include Van der Pauw pad structures to verify single via resistivity if needed

L.J. Van der Pauw, Philips Technical Review, vol. 26, #8, p. 220 (1958)

Planarization

- Degree of planarization
 - DOP = 1 hs/hm
 - Thickness dependant
 - Linewidth and space dependant
- Need pattern with variable linewidth / space grating

Random defect test pattern

- Test dielectric integrity
 - Pin holes detection
 - Serpentine line over solid metal plane
- Test for faults in metal lines
 - Use two orthogonal serpentine metallization
 - Test for shorts
 - Between top and bottom metallization levels
 - Between lines in a loop
 - Breaks in lines

Capacitors

- Area capacitance
 - Parallel plate caps
 - Need accurate thickness of polymer and metals
- Fringe capacitance
 - Comb capacitors
 - Can be used to measure surface leakage
- Cross-over capacitor
 - Line to line capacitance coupling at cross-overs

Parallel plate capacitor

- $C = \varepsilon \varepsilon_0 A/D$
 - Where: ε = Relative Dielectric
 - Constant of Insulator
 - \Box $\epsilon_0 = 8.854e-14 F/cm$
 - A = Area of Electrodes (cm2)
 - D = Distance between
 - Electrodes (cm)
- Measured value includes fringing capacitance (neglected above

Comb capacitor

- Moisture sensitive
 - Basis for hygrometer
 - Reveal moisture sensitivity

Capacitor design ref.: J.C. Hurt, C.L. Mohr, "A CAD design system for Hybrid circuits"

IEEE CHMT-3, 525 (1980)

Cross-over capacitor

- Characterize cross-over parasitic capacitance between conductor lines
- Basically a parallel plate capacitor
 - Fringe capacitance large relative to size

Triple track

- Test surface leakage of dielectric
 - Biased line surrounded by grounded lines exposed to temperature and humidity (usually 85 RH - 85 °C)
 - Measure conductivity between line and ground
 - Measure resistivity change of conductors
- Sensitive to surface contamination
 - Water absorption in polymer
 - lonic migration of metallization
 - Corrosion

Conclusion

- Specialized test patterns for polymer performance evaluation do:
 - Saves testing time
 - Reduces development and later manufacturing control costs
 - Allow optimization of processes with minimum efforts
 - Find the boundaries of processes
 - Provides information not available from a working device mask set
 - Provides real time monitoring of process and direct visual feedback
 - Leads to solid design rules based on statistical data
 - Gives realistic direct comparison of materials
 - Independent of process details
 - Evaluation done strictly on measurements